Случайные и системные ошибки

Разница между случайной и систематической ошибкой

Если ошибка не имеет какой-либо конкретной модели возникновения, она известна как случайная ошибка, которая также известна как несистематическая ошибка, и, следовательно, такие ошибки нельзя предсказать заранее, как неизбежную ошибку, тогда как систематическая ошибка — это ошибка, которая может возникнуть. из-за любой ошибки в измерении прибора ошибка или ошибка в использовании прибора экспериментатором и, следовательно, это ошибка, которой можно избежать.

Основное отличие состоит в том, что случайные ошибки в основном приводят к колебаниям, которые окружают истинное значение из-за трудностей при проведении измерений, тогда как систематические ошибки приводят к предсказуемым, а также постоянным отклонениям от истинного значения из-за проблем с калибровка оборудования.

Независимо от того, насколько осторожны при проведении экспериментов, скорее всего, будет ошибка, называемая экспериментальной ошибкой. Будь то из-за присущих ему проблем, связанных с проблемами с вашим оборудованием, точным выполнением измерений или полным предотвращением ошибки, это практически невозможно.

Чтобы противостоять упомянутой проблеме, ученые стараются изо всех сил классифицировать эти ошибки и пытаться количественно оценить любую неопределенность в измерениях, которые они делают. Выявление разницы между этими ошибками является жизненно важной частью обучения, позволяющего разрабатывать более эффективные эксперименты и пытаться свести к минимуму любые ошибки, которые действительно подкрадываются.

Инфографика случайных и систематических ошибок

Давайте посмотрим основные различия между случайной ошибкой и систематической ошибкой.

Ключевые отличия

Ключевые отличия заключаются в следующем:

  • Случайная ошибка определяет себя как непредсказуемое нарушение, которое возникает в вашем эксперименте из-за неизвестного источника. При этом систематическая ошибка возникает из-за неисправности аппарата, который не построен.
  • Случайная ошибка, как указано в приведенной выше таблице, возникает в обоих направлениях, тогда как систематическая ошибка возникает только в одном направлении. Систематические ошибки возникают из-за встроенной неисправности или ошибки аппарата; следовательно, он всегда дает аналогичную ошибку. Случайная ошибка, как упоминалось ранее, возникает из-за неизвестного источника, поэтому она возникает в любом направлении.
  • Величина систематической ошибки будет оставаться постоянной или неизменной, потому что дефект, который присутствует в ней, встроен внутри устройства, и по сравнению с величиной случайной ошибки он имеет переменную величину.
  • Ошибка 0 и неправильная калибровка прибора вызовут систематическую ошибку. Случайная ошибка возникает из-за параллакса или, как указано ранее в приведенной выше сравнительной таблице, из-за неправильного использования устройства.
  • Случайная погрешность уменьшается или может быть минимизирована путем получения 2 или более показаний одного и того же эксперимента, в то время как систематическая ошибка может быть минимизирована путем тщательного проектирования конструкции устройства.
  • Случайная ошибка сама по себе уникальна и не имеет конкретных типов, тогда как систематическая ошибка может быть разделена на три основных типа: ошибка среды, ошибка прибора и систематическая ошибка.
  • Случайная ошибка не воспроизводится, с другой стороны, систематическая ошибка будет воспроизводимой, потому что дефект, как указано ранее, встроен в структуру устройства.

Сравнительная таблица случайных и систематических ошибок

Основа Случайная ошибка Систематическая ошибка
Основное определение Это ошибки, которые колеблются из-за неопределенности или непредсказуемости, присущей вашему процессу измерения, или различий в величине, которую вы пытаетесь измерить. Это происходит в основном из-за недостатков оборудования, то есть они обычно возникают из-за неправильной калибровки оборудования.
Величина ошибки  Величина ошибки меняется при каждом чтении. Измеренное значение будет либо очень низким, либо очень высоким по сравнению с истинным значением.
Причины 1) Ошибка параллакса

2) Неправильное использование аппарата.

3) Ограничение инструмента, среды и т. Д.

1) Нулевая ошибка

2) Неправильная калибровка

Методы минимизации Повторно снимая показания. 1) За счет улучшения конструкции аппарата.

2) Ошибка нуля может быть уменьшена путем вычитания из ошибки нуля полученного показания.

Направление ошибки Это происходит с обеих сторон Это происходит только в одном направлении.
Подтипы ошибок Подтипов нет. Есть 3 подтипа — a. Инструмент b. Систематическая ошибка c. Среда.
Воспроизводимо ли это Этот вид ошибки не воспроизводится Этот вид ошибки воспроизводится
С точки зрения стоимости Цена — это комбинация стоимости, которая в основном связана с производством. Затраты снижаются, когда они сравниваются со стоимостью с точки зрения стоимости.

Вывод

Случайная ошибка в основном возникает из-за каких-либо нарушений, происходящих в вашем окружении, таких как колебания или перепады давления, температуры или из-за наблюдателя, который может принимать неправильные или неправильные показания. Систематическая ошибка, возможно, также возникает из-за механической конструкции аппарата.

Случайных ошибок по существу нельзя избежать, а систематических ошибок можно избежать. Ученые не могут делать точных масштабов или измерений, какими бы умелыми они ни были.

Систематические ошибки, возможно, трудно обнаружить, и это связано с тем, что все, что вы измеряете, будет неверным или неверным на ту же величину, и вы, возможно, вообще не осознаете, что существует проблема. Перед использованием необходимо правильно откалибровать оборудование, и да, тогда вероятность систематических ошибок будет намного меньше.

Поскольку
выборка охватывает , как правило,
весьма незначительную часть генеральной
совокупности, то следует предполагать,
что будут иметь место различия между
оценкой и характеристикой генеральной
совокупности, которую эта оценка
отображает. Эти различия получили
название ошибок отображения или ошибок
репрезентативности. Ошибки
репрезентативности подразделяются
на два типа : систематические и случайные.

Систематические
ошибки

это постоянное завышение или занижение
значения оценки по сравнению с
характеристикой генеральной совокупности
. Причиной появления систематической
ошибки является несоблюдение принципа
равновероятности попадания каждой
единицы генеральной совокупности в
выборку , то есть выборка формируется
из преимущественно «худших» ( или «
лучших») представителей генеральной
совокупности. Соблюдение принципа
равновозможности попадания каждой
единицы в выборку позволяет полностью
исключить этот тип ошибок .

Случайные
ошибки

это меняющиеся
от выборки к выборке по знаку и величине
различия между оценкой и оцениваемой
характеристикой генеральной совокупности
. Причина возникновения случайных
ошибок- игра случая при формировании
выборки, составляющей лишь часть
генеральной совокупности. Этот тип
ошибок органически присущ выборочному
методу. Исключить их полностью нельзя,
задача состоит в том , чтобы предсказать
их возможную величину и свести их к
минимуму. Порядок связанных в связи
с этим действий вытекает из рассмотрения
трех видов случайных ошибок : конкретной
, средней и предельной.

2.2 Конкретная, средняя и предельная ошибки выборки

2.2.1
Конкретная

ошибка – это ошибка одной проведенной
выборки. Если средняя по этой выборке
(
) является оценкой для генеральной
средней (0
) и, если
предположить, что эта генеральная
средняя нам известна , то разница
=0
и будет
конкретной ошибкой этой выборки. Если
из этой генеральной совокупности
выборку повторим многократно, то каждый
раз получим новую величину конкретной
ошибки :
…,
и так далее.
Относительно этих конкретных ошибок
можно сказать следующее: некоторые из
них будут совпадать между собой по
величине и знаку, то есть имеет место
распределение ошибок, часть из них
будет равна 0, наблюдается совпадение
оценки и параметра генеральной
совокупности;

2.2.2
Средняя ошибка

– это средняя квадратическая из всех
возможных по воле случая конкретных
ошибок оценки :
,
где— величина меняющихся конкретных
ошибок;частота
( вероятность ) встречаемости той или
иной конкретной ошибки. Средняя
ошибка выборки показывает насколько
в среднем можно ошибиться , если на
основе оценки делается суждение о
параметре генеральной совокупности.
Приведенная формула раскрывает
содержание средней ошибки, но она не
может быть использована для практических
расчетов, хотя бы потому, что предполагает
знание параметра генеральной совокупности
, что само по себе исключает необходимость
выборки.

Практические
расчеты средней ошибки оценки
основываются на той предпосылке, что
она ( средняя ошибка ) по сути является
средним квадратическим отклонением
всех возможных значений оценки. Эта
предпосылка позволяет получить алгоритмы
расчета средней ошибки, опирающиеся
на данные одной единственной выборки.
В частности средняя ошибка выборочной
средней может быть установлена на
основе следующих рассуждений. Имеется
выборка (
,) состоящая изединиц. По выборке в качестве оценки
генеральной средней определена
выборочная средняя. Каждое значение(,) , стоящее под знаком суммы, следует
рассматривать как независимую случайную
величину, поскольку при бесконечном
повторении выборки первая, вторая и
т.д. единицы могут принимать любые
значения из присутствующих в генеральной
совокупности. СледовательноПоскольку , как известно, дисперсия
суммы независимых случайных величин
равна сумме дисперсий , то.
Отсюда следует, что средняя ошибка для
выборочной средней будет равнаяи находится она в обратной зависимости
от численности выборки ( через корень
квадратный из нее ) и в прямой от среднего
квадратического отклонения признака
в генеральной совокупности. Это логично,
поскольку выборочная средняя является
состоятельной оценкой для генеральной
средней и по мере увеличения численности
выборки приближается по своему значению
к оцениваемому параметру генеральной
совокупности. Прямая зависимость
средней ошибки от колеблемости признака
обусловлена тем, что чем больше
изменчивость признака в генеральной
совокупности, тем сложнее на основе
выборки построить адекватную модель
генеральной совокупности. На практике
среднее квадратическое отклонение
признака по генеральной совокупности
заменяется его оценкой по выборке, и
тогда формула для расчета средней
ошибки выборочной средней приобретает
вид:,
при этом учитывая смещенность
выборочной дисперсии,
выборочное среднее квадратическое
отклонение рассчитывается по формуле=. Так как символомn
обозначена численность выборки. ,то
в знаменателе при расчете среднего
квадратического отклонения должна
использоваться не численность выборки
( n
), а так называемое число степеней
свободы (n-1).
Под числом степеней свободы понимается
число единиц в совокупности, которые
могут свободно варьировать ( изменяться
), если по совокупности определена
какая-либо характеристика. В нашем
случае , поскольку по выборке определена
ее средняя, свободно варьировать могут

единицы.

В
таблице 2.2 приведены формулы для
расчета средних ошибок различных
выборочных оценок . Как видно из этой
таблицы, величина средней ошибки по
всем оценкам находится в обратной связи
с численностью выборки и в прямой с
колеблемостью. Это можно сказать и
относительно средней ошибки выборочной
доли ( частости ). Под корнем стоит
дисперсия альтернативного признака,
установленная по выборке (
)

Приведенные
в таблице 2.2 формулы относятся к так
называемому случайному , повторному
отбору единиц в выборку. При других
способах отбора , о которых речь пойдет
ниже, формулы будут несколько
видоизменяться.

Таблица
2.2

Формулы для
расчета средних ошибок выборочных
оценок

Выборочные
оценки

Формулы
для расчета средней ошибки выборочной
оценки

Выборочная
средняя (
)

Выборочная
дисперсия
(
)

Выборочное
среднее квадратическое отклонение
( s
)

Выборочная
доля (w
)

2.2.3
Предельная ошибка выборки

Знание оценки и ее средней ошибки в
ряде случаев совершенно недостаточно
. Например , при использовании гормонов
при кормлении животных знать только
средний размер неразложившихся их
вредных остатков и среднюю ошибку,
значит подвергать потребителей продукции
серьезной опасности. Здесь настоятельно
напрашивается необходимость определения
максимальной ( предельной
ошибки
).
При использовании выборочного метода
предельная ошибка устанавливается не
в виде конкретной величины , а виде
равных границ

(
интервалов) в ту и другую сторону от
значения оценки.

Определение
границ предельной ошибки основывается
на особенностях распределения конкретных
ошибок . Для так называемых больших
выборок, численность которых более 30
единиц (
)
, конкретные ошибки распределяются в
соответствии с нормальным законом
распределения; при малых выборках () конкретные ошибки распределяются
в соответствии с законом распределения
Госсета

(
Стьюдента ). Применительно к конкретным
ошибкам выборочной средней функция
нормального распределения имеет
вид:
,
где— плотность вероятности появления тех
или иных значений,
при условии, что,
гдевыборочные средние;
генеральная средняя,— средняя ошибка для выборочной
средней. Поскольку средняя ошибка
()
является величиной постоянной, то в
соответствии с нормальным законом
распределяются конкретные ошибки,
выраженные в долях средней ошибки, или
так называемых нормированных отклонениях
.

Взяв
интеграл функции нормального
распределения, можно установить
вероятность того , что ошибка будет
заключена в некотором интервале
изменения t
и вероятность того, что ошибка выйдет
за пределы этого интервала ( обратное
событие ). Например , вероятность того,
что ошибка не превысит половину средней
ошибки ( в ту и другую сторону от
генеральной средней ) составляет
0,3829, что ошибка будет заключена в
пределах одной средней ошибки — 0,6827,
2-х средних ошибок -0,9545 и так далее.

Взаимосвязь
между уровнем вероятности и интервалом
изменения t
( а в конечном счете интервалом
изменения ошибки ) позволяет подойти
к определению интервала ( или границ )
предельной ошибки, увязав его величину
с вероятностью осуществления..
Вероятность осуществления -это
вероятность того, что ошибка будет
находится в некотором интервале.
Вероятность осуществления будет
«доверительной» в том случае, если
противоположное событие ( ошибка будет
находится вне интервала ) имеет такую
вероятность появления, которой можно
пренебречь. Поэтому доверительный
уровень вероятности устанавливают,
как правило, не ниже 0,90 (вероятность
противоположного события равна 0,10 ).
Чем больше негативных последствий
имеет появление ошибок вне установленного
интервала, тем выше должен быть
доверительный уровень вероятности (
0,95; 0,99 ; 0,999 и так далее ).

Выбрав
доверительный уровень вероятности
по таблице интеграла вероятности
нормального распределения, следует
найти соответствующее значение t,
а затем используя выражение
=определить интервал предельной ошибки.
Смысл полученной величины в следующем
– с принятым доверительным уровнем
вероятности предельная ошибка выборочной
средней не превысит величину.

Для
установления границ предельной ошибки
на основе больших выборок для других
оценок ( дисперсии, среднего квадратического
отклонения, доли и так далее ) используется
выше рассмотренный подход, с учетом
того, что для определения средней
ошибки для каждой оценки используется
свой алгоритм.

Что
касается малых выборок () то, как уже говорилось, распределение
ошибок оценок соответствует в этом
случае распределениюt
— Стьюдента. Особенность этого
распределения состоит в том, что в
качестве параметра в нем , наряду с
ошибкой, присутствует численность
выборки ,вернее не численность выборки,
а число степеней свободы
При увеличении численности выборки
распределениеt-Стьюдента
приближается к нормальному, а при
эти распределения практически совпадают.
Сопоставляя значения величиныt-Стьюдента
и t
— нормального распределения при одной
и той же доверительной вероятности
можно сказать , что величина t-Стьюдента
всегда больше t
— нормального распределения, причем,
различия возрастают с уменьшением
численности выборки и с повышением
доверительного уровня вероятности.
Следовательно, при использовании малых
выборок имеют место по сравнению с
выборками большими , более широкие
границы предельной ошибки, причем , эти
границы расширяются с уменьшением
численности выборки и повышением
доверительного уровня вероятности.

Вопросы для
повторения

6-1.Какова
природа конкретной, средней и предельной
ошибок ?

6-2.Как
соблюсти принцип равновероятности
каждой единицы попасть в выборку при
выборочном устном опросе студентов ?

6-3 Каков источник
систематической ошибки ?

6-4.Какова
вероятность появления ошибки в 2.5 раза
превышающей среднюю?

6-5.Какие
различия в знаках ( + , — ) имеют
систематические и случайные ошибки?

6-6.Каковы основные
пути уменьшения средней и предельной
ошибки ?

6-7.При какой
выборочной доле имеет место ее наибольшая
ошибка ?

6-8.При какой доле
признака имеет место ее наименьшая
ошибка 7

6-9.При
каких выборках ( больших или малых )
при прочих равных условиях имеет место
большая предельная ошибка ?

Резюме по
модульной единице 2

Использование
выборочного метода неизбежно сопряжено
с появлением ошибок. Случайный характер
этих ошибок, нормальный или t
— Стьюдента закон их распределения
позволяет определить их средний и
предельный размер и видеть пути их
снижения

Модульная
единица 3 Типовые задачи решаемые на
основе выборочного метода

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

No matter how careful we are when conducting experiments, there will almost certainly be uncertainty in our results. No experimental apparatus is perfect, and avoiding error altogether is practically impossible because our world is full of countless idiosyncrasies and unpredictable factors. To counteract this issue, scientists do their best to categorize errors and quantify any uncertainty in measurements they make. Systematic and random errors are a key part of learning to design better experiments, and finding out how to quantify and minimize these two types of error can lead to more concrete and reliable results.

TL;DR (Too Long; Didn’t Read)

Random errors are unavoidable and result from the inevitable variation when taking measurements or attempting to record quantities in the world. These errors will fluctuate, but they generally cluster around the true value. These types of measurement error are crucial to accurately reporting scientific findings.

Systematic errors usually result from uncalibrated equipment, environmental influence, or models that rely on specific parameters that may cause systematic bias. Every measurement you take will be wrong by the same amount – an offset error.

What Is Random Error?

Random error describes measurement errors that fluctuate due to the unpredictability or uncertainty inherent in your measuring process. Environmental factors and simple variation in experimental processes can result in chance differences between results; this is the source of random error.

A scientist measuring an insect, for example, might try to position the insect at the zero point of a ruler or measuring instrument to read the value at the other end. The ruler itself will probably only measure down to the nearest millimeter, and reading this with precision can be difficult. You may underestimate the true size of the insect or overestimate it, based on how well you read the scale and your judgment as to where the head of the insect stops. The insect might also move ever so slightly from the zero position without you realizing. Repeating the measurement multiple times yields many different results because of this, but they would likely cluster around the true value.

This observational error is unavoidable; even with the most precise machines, instrumental error will always result in some unknown impact on measured values.

Similarly, taking measurements of a quantity that changes from moment to moment leads to random error. Wind speed, for example, may pick up and fall off at different points in time. If you take a measurement one minute, it probably won’t be exactly the same a minute later. Again, repeated measurements will lead to results that fluctuate but cluster around the true value. With time dependent variables however, the true measurement might also fluctuate unpredictably with time, so the best we can do is represent the general changes and accept any inaccuracy.

What Is Systematic Error?

A systematic error is an additive source of error that results from a persistent issue, and it leads to a consistent error in your measurements. For example, if your measuring tape has been stretched out, your results will always be lower than the true value. Similarly, if you’re using scales that haven’t been set to zero beforehand, there will be a systematic error resulting from the mistake in the calibration (e.g., if a true weight of 0 reads as 5 grams, 10 grams will read as 15 and 15 grams will read as 20).

Some types of systematic error include instrumental error, environmental error, and predicted/theoretical error. These sources of systematic error all contribute some set quantity of uncertainty to every measurement, and the magnitude of error will depend on the source of the systematic error.

Random vs Systematic Error

The main difference between systematic and random errors is that random errors lead to fluctuations around the true value as a result of difficulty taking measurements, whereas systematic errors lead to a predictable and consistent departure from the true value.

Random errors are essentially unavoidable, while systematic errors are not. Scientists can’t take perfect measurements, no matter how skilled they are. If the quantity you’re measuring varies from moment to moment, you can’t make it stop changing while you take the measurement, and no matter how detailed your scale, reading it accurately still poses a challenge. The good news is that repeating your measurement multiple times and taking the average effectively minimizes this issue. Random error is proportional to the sample size of your measurements (or the number of data points you have). As such, we can reduce such errors by taking as many data samples as reasonable for a specific situation.

Systematic errors may be difficult to spot. This is because everything you measure will be wrong by the same (or a similar) amount and you may not realize there is an issue at all. However, unlike random errors they can often be avoided altogether. If we set up experimentation carefully and analyze results rigorously, systematic errors will be much less likely.

Reporting Random Error

Since random error is an unavoidable aspect of any scientific results, it is important to be able to accurately report the random error for any given experiment. We do this with statistical values like mean, standard deviation, and standard error. There are multiple ways to represent the distribution of a data set, but these three metrics are widely applicable to almost any data set.

Mean

The mean of a data set is simply the sum of all recorded values divided by the number of measurements:

\mu = \frac{\sum_{i=1}^Na_i}{N}

where the set A is all recorded values and N is the size of the sample.

Standard Deviation

The standard deviation describes the general distribution of the data (i.e how spread out the results were):

\sigma = \sqrt{\frac{\sum_{i=1}^{N}{(a_i-\mu)^2}}{N}}

Standard Error

Standard error is often how the error for the mean value of a data set is reported as a final result. It represents how other data sets would be expected to compare to this instance of experimental results. The formula is based on sample size and standard deviation:

\text{Standard Error} = \frac{\sigma}{\sqrt{N}}

Становится практически невозможно избежать ошибок при выполнении точных измерений или при возникновении проблем с оборудованием. Измерения физических величин не всегда могут быть правильными значениями.

Чтобы избежать таких ошибок, ученые пытаются классифицировать ошибки и устранять неопределенности в своих измерениях.

Существует два основных вида ошибок: систематическая ошибка и случайная ошибка. знание о систематических и случайных ошибках помогает нам лучше проводить эксперименты и уменьшать ошибки.

Основные выводы

  1. Систематическая ошибка — это последовательное, повторяющееся отклонение от истинного значения в измерении или эксперименте, часто вызванное неисправным оборудованием или предвзятой методологией.
  2. Случайная ошибка — это непредсказуемое непостоянное отклонение от истинного значения из-за непредсказуемых факторов, таких как методы измерения или условия окружающей среды.
  3. Ключевые различия между систематическими и случайными ошибками заключаются в их причинах и предсказуемости, при этом систематические ошибки постоянны и связаны с конкретными факторами. Напротив, случайные ошибки непостоянны и их трудно предсказать.

Систематическая и случайная ошибка

Систематические ошибки возникают из-за недостатков в экспериментальной схеме или оборудовании, таких как смещение прибора, неправильная калибровка или неправильный метод измерения. Случайные ошибки могут привести к неточности, но их можно уменьшить путем проведения нескольких измерений и усреднения результатов.

Систематическая и случайная ошибка


Сравнительная таблица

Параметры сравнения Систематическая ошибка Случайная ошибка
Смысл Систематическая ошибка – это ошибка, возникающая из-за неисправности измерительного прибора. Случайная ошибка — это ошибка, возникающая из-за непредсказуемых изменений в окружающей среде.
Повторяющиеся Систематические ошибки повторяются. Случайные ошибки обычно не повторяются.
Причины Неисправности экспериментального оборудования. Непредсказуемые колебания показаний и помехи в окружающей среде.
Снижение Систематические ошибки можно уменьшить, используя правильное оборудование или правильные методы. Случайные ошибки можно уменьшить, повторяя показания и увеличивая количество наблюдений.
Тип Три типа: инструмент, среда и систематическая ошибка. Нет типов.
Воспроизводимый Они воспроизводимы. Они не воспроизводимы.
Величина ошибки постоянная Меняться

Что такое систематическая ошибка?

Систематическая ошибка также известна как систематическая погрешность. Это постоянные ошибки, которые могут повторяться из-за ошибочного плана эксперимента.

Источники систематических ошибок:

  1. Неправильно откалиброванный прибор
  2. Изношенный инструмент
  3. Человек неправильно измеряет

Существует три типа систематических ошибок:

  1. Инструментальная ошибка. В основном существует три причины инструментальных ошибок:
    1. Неправильное использование экспериментальной установки. Когда механическая структура установки не идеальна.
    1. Когда есть загрузка эффект.
  2. Ошибка наблюдения возникает, когда наблюдатель неправильно интерпретирует показания.
  3. Ошибка окружающей среды. Когда происходят изменения в окружающей среде, такие как давление, влажностьи т. д., это может привести к ошибкам среды.

Что такое Случайная ошибка?

Как следует из названия, случайная ошибка нерегулярна и не может быть предсказана. Такие ошибки возникают, когда некоторые ограничения находятся вне контроля экспериментатора.

Случайная ошибка также известна как статистическая ошибка. Это так, потому что такие ошибки могут быть устранены статистическими средствами, поскольку они нерегулярны и противоречивы.

В отличие от систематических ошибок, случайные ошибки могут быть уменьшены за счет многократного проведения наблюдений и среднего значения многих наблюдений.


Основные различия между Систематическая и случайная ошибка

  1. Систематические ошибки воспроизводимы, тогда как случайные ошибки не воспроизводимы.
  2. Величина ошибки постоянна при систематических ошибках и может изменяться при случайных ошибках.

Рекомендации

  1. https://journals.ametsoc.org/mwr/article/121/1/173/65053
  2. https://journals.ametsoc.org/jhm/article/17/4/1119/342820

Эмма Смит 200x200 1

Эмма Смит имеет степень магистра английского языка в колледже Ирвин-Вэлли. Она работает журналистом с 2002 года, пишет статьи об английском языке, спорте и праве. Подробнее обо мне на ней био страница.

  • Разница между случайной ошибкой и систематической ошибкой

Разница между случайной ошибкой и систематической ошибкой

Ошибка определяется как разница между фактическим или истинным значением и измеренным значением. Измерение количества или стоимости основано на каком-то стандарте. Измерение любого количества осуществляется путем сравнения его с производным стандартом, который не является полностью точным. Чтобы понять ошибки в измерении, следует понимать два термина, которые определяют ошибку, и они являются истинным значением и измеренным значением. Истинное значение невозможно выяснить, оно может быть определено по среднему значению бесконечного числа. Измеренное значение определяется как оценочное значение истинного значения путем взятия нескольких измеренных значений. Ошибка не должна быть перепутана с ошибкой, ошибки можно избежать, но ошибки не избежать, но их можно минимизировать. Так что ошибка не является ошибкой его части измерительной обработки. Измерение — это разница между измеренным значением количества и его истинным значением. мы обсудим случайную ошибку и систематическую ошибку. Погрешности измерения делятся на два обширных класса ошибок.

  1. Случайная ошибка
  2. Систематическая ошибка

Случайная ошибка:

Случайная ошибка — это не что иное, как колебания в измерении, которые в основном наблюдаются путем проведения нескольких испытаний данного измерения. Как следует из названия, эта ошибка происходит совершенно случайно. Они непредсказуемы и не могут быть воспроизведены путем повторения эксперимента снова. Так что каждый раз это дает разные результаты. Случайная ошибка варьируется от наблюдения к другому. При случайной ошибке колебание может быть как отрицательным, так и положительным. Не всегда возможно определить источник случайной ошибки. Случайная ошибка происходит из-за фактора, который не может или не будет контролироваться. Случайная ошибка влияет на достоверность результатов. Некоторые из возможных источников или причин случайных ошибок перечислены ниже.

  • Наблюдение: ошибка в суждении наблюдателя.
  • Небольшие помехи: Небольшие помехи могут привести к ошибкам измерения, например
  • Колеблющиеся условия: Некоторое изменение температуры во времени или в окружающей среде может привести к ошибке в измерении.
  • Качество: Некоторое время, когда качество объекта, измерение которого должно быть выполнено, не определено должным образом, приводит к ошибке.

Ошибка может быть уменьшена, если взять число чтений, а затем найти среднее или среднее значение чтения.

Систематическая ошибка:

Систематическая ошибка — это когда одна и та же ошибка присутствует во всех показаниях. Систематическая ошибка предсказуема и обычно постоянна или пропорциональна истинному значению. Таким образом, систематическая ошибка повторяется каждый раз, и это приводит к ошибкам согласованности. Если мы повторим эксперимент, мы получим одну и ту же ошибку каждый раз. Систематические ошибки возникают из-за неправильной калибровки прибора. Систематическая ошибка влияет на точность результата. Систематическая ошибка также называется нулевой ошибкой, положительной или отрицательной ошибкой. Некоторые из возможных источников или причин систематической ошибки перечислены ниже.

  • Инструментальная ошибка: оборудование, используемое для измерения объекта, может быть не совсем точным.
  • Экологическая ошибка: ошибка возникает из-за изменений условий окружающей среды, таких как влажность, давление, температура и т. Д.
  • Наблюдательная ошибка: ошибка в записи данных, также называемая человеческими ошибками. После выявления систематической ошибки она может быть в некоторой степени уменьшена. Систематическая ошибка может быть сведена к минимуму путем регулярной калибровки оборудования, использования элементов управления и сравнения значений со стандартным значением.

Сравнение между случайными ошибками и значением систематической ошибки (инфографика)

Ниже приведено 8 основных различий между случайной ошибкой и систематической ошибкой

Ключевые различия между случайной ошибкой и систематической ошибкой

Давайте обсудим некоторые основные различия между случайной ошибкой и систематической ошибкой

  • Случайная ошибка непредсказуема и возникает из-за неизвестных источников, тогда как систематическая ошибка является предсказуемой и возникает из-за дефекта прибора, который используется для измерения.
  • Случайная ошибка возникает в обоих направлениях, тогда как систематическая ошибка возникает только в одном направлении.
  • Случайная ошибка не может быть устранена, но большинство систематических ошибок может быть уменьшено.
  • Случайная ошибка является уникальной и не имеет определенного типа, тогда как систематическая ошибка имеет 3 типа, как указано в таблице выше.
  • Систематическую ошибку трудно обнаружить, это происходит из-за одних и тех же результатов каждый раз и не осознает, что проблема вообще существует, тогда как случайную ошибку легко обнаружить из-за разных результатов каждый раз.

Сравнительная таблица случайных ошибок и систематических ошибок

Ниже приведено 8 лучших сравнений между случайной ошибкой и систематической ошибкой.

Основное сравнение между случайной ошибкой и систематической ошибкой Случайная ошибка Систематическая ошибка
Определение Это происходит из-за неопределенных изменений в окружающей среде и колеблется каждый раз при измерении. Это постоянная ошибка и остается неизменной для всех измерений.
Свести к минимуму Путем многократного взятия показаний и расчета среднего или среднего из повторных показаний. Сравнивая значение со стандартным значением и улучшая структуру оборудования.
Величина ошибки Каждый раз дают другой результат, который меняется каждый раз. Результат остается неизменным или постоянным каждый раз.
Направление ошибки Это происходит в обоих направлениях. Это происходит в том же направлении.

Подтип ошибки

Нет подтипов Подтипы Инструмент, Среда и Систематическая Ошибка.
воспроизводимый Невоспроизводимый. Воспроизводимые.
Значение Цена представляет собой сочетание стоимости. Затраты снижаются, когда они сравниваются со стоимостью в стоимостном выражении.
Пример ошибки Время реакции, погрешность измерения из-за недостаточной точности, погрешность параллакса (если каждый раз смотреть под случайным углом) Ошибка шкалы, ошибка нуля, ошибка параллакса (если диск виден под тем же углом)

Выводы

Таким образом, случайная ошибка в основном возникает из-за каких-либо возмущений в окружающей среде, таких как колебания или различия в давлении, температуре или из-за наблюдателя, который может принять неправильные показания, в то время как систематическая ошибка возникает из-за механической структуры прибора. Случайная ошибка не может быть предотвращена, в то время как систематическая ошибка может быть предотвращена. Полное устранение обеих ошибок невозможно. Основное различие между случайными ошибками и систематическими ошибками заключается в том, что случайная ошибка в основном приводит к колебаниям, тогда как систематические ошибки приводят к предсказуемому и последовательному результату. При работе с промышленными приборами важно, чтобы оператор тщательно следил за экспериментом, чтобы погрешность измерения могла быть уменьшена.

Рекомендуемые статьи

Это было руководство к разнице между случайной ошибкой и систематической ошибкой. Здесь мы также обсудим различия между случайной ошибкой и систематической ошибкой с помощью инфографики и сравнительной таблицы. Вы также можете взглянуть на следующие статьи, чтобы узнать больше.

  1. Экономический рост против экономического развития
  2. Бухгалтерский учет и финансовый менеджмент
  3. Покупка активов против покупки акций
  4. Ангел Инвестор против Венчурного Капитала

Понравилась статья? Поделить с друзьями:

Интересное по теме:

  • Сломав крыло галка была вылечена где ошибка
  • Служебная ошибка сериал
  • Случайная ошибка манхва
  • Служба самсунг experience произошел сбой как исправить ошибку
  • Случайная ошибка орфография 8 букв

  • Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: