Отношение абсолютной ошибки к значению самой измеренной величины

Ошибки измерений физических величин

По способу
выражения точности результатов измерения
различают абсолютную и относительнуюошибки.

Абсолютной ошибкойизмерения
некоторой величиныxназывают разность между измеренным
значениемxи истинным
значениемa измеряемой величины:

x =a
x.
(1)

Абсолютная ошибка имеет размерность
измеряемой величины и указывает на
необходимую поправку в данном результате
измерения. При этом она определяет
неточность в измерении величины вне
зависимости от её значения.

Относительной ошибкойизмеренияназывают отношение
абсолютной ошибки измерения к истинному
значению измеряемой величины:

 = x/a
. (2)

Относительная
ошибка безразмерна или иногда выражается
в процентах:

 = (x/a)100%
. (3)

Если абсолютная ошибка определяет
неточность в измерении величины
безотносительно к значению самой
величины, то относительная ошибка даёт
более непосредственное представление
о точности проведённых измерений, так
как определяет, какую долю составляет
ошибка в полученном результате. Например,
абсолютная ошибка в 1 грамм (x= 1 г) при измерении массы тела в 10 кг даёт
неточность всего= (10-3/10)100%
= 0,01%, в то время как такая же абсолютная
ошибка в определении массы тела в 10
г даёт неточность уже= (10-3/10-2)100%
= 10%.

По характеру проявления различают три
вида ошибок: грубые ошибки (промахи),
систематические ошибки и случайные
ошибки.

Промахи– допущенные грубые ошибки,
когда некоторые измерения вдруг резко
выделяются из большого ряда полученных
измерений. Они могут возникать вследствие
недостатка внимания экспериментатора,
непредсказуемого поведения прибора
(внешние наводки, нестабильность
источника питания и т.д.) и множества
других причин, которые практически
невозможно учесть. Такие измерения
обычно просто отбрасываются, хотя, надо
сказать, существуют критерии, позволяющие
разобраться в том, является ли данное
измерение промахом или же естественным
случайным отклонением от среднего
значения, т.е. измерением, которое нельзя
отбрасывать (такие критерии разбираются
в приведённой в конце этих методических
указаний литературе). Обычно, всё же
даже неверный отброс случайного
измерения, как “промаха”, не приводит
к заметному изменению оценок неточностей
измеряемой величины.

Систематические ошибки связаны с
факторами, действующими одинаково при
многократном повторении одних и тех же
измерений. Они возникают по нескольким
причинам. 1). Из-за погрешности метода
измерений, который может не учитывать
некоторых факторов, влияющих на результат
измерений. Например, это – неучёт при
измерениях длины тела её зависимости
от температуры, не принятие во внимание
“потери веса” тела в воздухе из-за
наличия выталкивающей силы и т.д. Во
многих случаях величину и знак такой
систематической ошибки можно установить
и ввести соответствующие поправки.
Поправка, разумеется, равна систематической
ошибке измерения, взятой с обратным
знаком. 2). Из-за неизвестных, непредполагаемых
свойств измеряемого объекта (например,
наличие в нём пустот, несимметричность
считающегося симметричным объекта и
т.д.). Эти ошибки исключаются только,
если провести измерения изучаемой
величины другим методом и в других
условиях эксперимента. 3). Из-за
индивидуальных погрешностей, допускаемых
в процессе измерений наблюдателем.
Например, наблюдатели по-разному
внимательны, обладают разной скоростью
реакции, а это приводит к систематическим
ошибкам при слежении за “уходом нуля”
приборов, при регистрации временных
интервалов секундомером и т.д. Устранить
индивидуальные систематические
погрешности можно только повторением
этих измерений другими наблюдателями.
4). Из-за ошибок, которые вносят погрешности
измерительных приборов. Погрешности
измерительных приборов будут подробно
разобраны в следующем разделе.

Случайные погрешности определяются
сложной совокупностью причин. Они
обнаруживаются при всё большем числе
повторных измерений в виде некоторого
разброса результатов измерений, причём
невозможно предсказать результат
очередного измерения. Но это не означает,
что случайная ошибка не подчиняется
никаким закономерностям. Законы её
изменения носят статистический характер.
Далее отдельно будет дано математическое
обоснование определения этой ошибки.

Соседние файлы в папке лабы физика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Полученное из опыта значение измеряемой величины может
отличаться от ее действительного (истинного) значения.

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой
величины.

Это может быть обусловлено конструктивными недостатками прибора, несовершенством технологии его
изготовления, а также влиянием различных внешних факторов.

Таким образом, погрешности классифицируют:

  1. По источнику возникновения (метод, инструмент, субъект)

    -Методические (зависят от метода измерения и способа включения приборов в электрическую цепь)

    -Инструментальные (зависят от средства измерения)

    -Субъективные (зависят от измерителя)

  2. По условиям проведения измерений (температура, давление, влажность)

    -Основные (измерения проводятся в нормальных условиях — при нормальной температуре, давлении,
    влажности)

    -Дополнительные (условия отличны от нормальных)

  3. По характеру проявления (систематические, случайные, промахи)

    Систематические – погрешности, остающиеся постоянными или закономерно изменяющимися при повторных
    измерениях тем же способом и средствами. Т.е. они заранее известны и их легко исключить.

    Случайные – погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же
    величины.  Обычно выявляются в результате многократных измерений (не менее 10).

    Промах – грубая ошибка, обусловленная неправильным отсчетом или расчетом, небрежностью измеряющего,
    поломки прибора, неправильно собранной схемы, невнимательности и т.д. Такие данные необходимо исключать.

  4. По временному поведению измеряемой величины (статическая, динамическая)

    Статическая – когда измеряемая величина не меняется за время измерения

    Динамическая – когда прибор не успевает реагировать на изменения измеряемой величины.

  5. По способу выражения измеряемой величины

    • абсолютная;

    • относительная;

    • приведенная.

      Абсолютной погрешностью
      D
      Х называется разность между измеренным и действительным значениями.

       – измеренное значение;

      – действительное значение измеряемой величины.

      Выражается
      D
      Х в единицах измеряемой величины.

      Относительная погрешность
       – отношение абсолютной погрешности к действительному значению измеряемой величины.

      Выражается в процентах или относительных единицах. Относительная погрешность характеризует
      точность измерений.

      Приведенная погрешность
      g
      пр – отношение абсолютной погрешности к номинальному (нормированному) значению – верхнему пределу диапазона
      или поддиапазона измерения прибора.

      Пределом измерения прибора называется наибольшая величина, на которую рассчитан данный
      прибор.

      Прибор может иметь несколько пределов измерений (например, вольтметр).

      Чем меньшую погрешность дает прибор, тем он точнее.

    • Выражается в процентах.

      Максимальная приведенная погрешность определяет класс точности прибора.

    • Электроизмерительные приборы изготавливаются нескольких классов точности

0,01

0,02

0,2

1,5

0,05

0,5

2,5

0,1

1,0

4

Эти числа определяют максимальную погрешность прибора при полном отклонении указателя (стрелки).

Определяют также среднеквадратическую погрешность результата измерения по формуле:

Выражается  в единицах измеряемой величины.

За действительное значение измеряемой величины принимается обычно среднее арифметическое из ряда
измерений.

Хд = ХСР = 1 + Х2 +
Х3 + … + Хn)/n,

где Х1, Х2,… , Хn – результаты измерений


       n – количество измерений


Загрузить PDF


Загрузить PDF

Абсолютная ошибка – это разность между измеренным значением и фактическим значением.[1]
Эта ошибка характеризует точность измерений. Если вам известны фактическое и измеренное значения, можно с легкостью вычислить абсолютную ошибку. Но иногда фактическое значение не дано, поэтому в качестве абсолютной ошибки пользуются максимально возможной ошибкой.[2]
Если даны фактическое значение и относительная ошибка, можно вычислить абсолютную ошибку.

  1. Изображение с названием Calculate Absolute Error Step 1

    1

    Запишите формулу для вычисления абсолютной ошибки. Формула: \Delta x=x_{{0}}-x, где \Delta x – абсолютная ошибка (разность между измеренным и фактическим значениями), x_{{0}} – измеренное значение, x – фактическое значение.[3]

  2. Изображение с названием Calculate Absolute Error Step 2

    2

    Подставьте в формулу фактическое значение. Фактическое значение должно быть дано; в противном случае используйте принятое опорное значение. Фактическое значение подставьте вместо x.

    • Например, нужно измерить длину футбольного поля. Фактическая длина (принятая опорная длина) футбольного поля равна 105 м (именно такое значение рекомендуется FIFA). Таким образом, фактическое значение равно 105 м: \Delta x=x_{{0}}-105.
  3. Изображение с названием Calculate Absolute Error Step 3

    3

    Подставьте в формулу измеренное значение. Оно будет дано; в противном случае измерьте величину (длину или ширину и так далее). Измеренное значение подставьте вместо x_{0}.

    • Например, вы измерили длину футбольного поля и получили значение 104 м. Таким образом, измеренное значение равно 104 м: \Delta x=104-105.
  4. Изображение с названием Calculate Absolute Error Step 4

    4

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[4]
    Так вы вычислите абсолютную ошибку.

    • В нашем примере: \Delta x=104-105=-1, то есть абсолютная ошибка измерения равна 1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 5

    1

    Запишите формулу для вычисления относительной ошибки. Формула: \delta x={\frac  {x_{{0}}-x}{x}}, где \delta x – относительная ошибка (отношение абсолютной ошибки к фактическому значению), x_{{0}} – измеренное значение, x – фактическое значение.[5]

  2. Изображение с названием Calculate Absolute Error Step 6

    2

    Подставьте в формулу относительную ошибку. Скорее всего, она будет дана в виде десятичной дроби. Относительную ошибку подставьте вместо \delta x.

    • Например, если относительная ошибка равна 0,02, формула запишется так: 0,02={\frac  {x_{{0}}-x}{x}}.
  3. Изображение с названием Calculate Absolute Error Step 7

    3

    Подставьте в формулу фактическое значение. Оно будет дано. Фактическое значение подставьте вместо x.

    • Например, если фактическое значение равно 105 м, формула запишется так: 0,02={\frac  {x_{{0}}-105}{105}}.
  4. Изображение с названием Calculate Absolute Error Step 8

    4

    Умножьте обе стороны уравнения на фактическое значение. Так вы избавитесь от дроби.

  5. Изображение с названием Calculate Absolute Error Step 9

    5

    Прибавьте фактическое значение к каждой стороне уравнения. Так вы найдете x_{{0}}, то есть измеренное значение.

  6. Изображение с названием Calculate Absolute Error Step 10

    6

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[6]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренное значение равно 107,1 м, а фактическое значение равно 105 м, вычисления запишутся так: 107,1-105=2,1. Таким образом, абсолютная ошибка равна 2,1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 11

    1

    Определите единицу измерения. То есть выясните, было ли значение измерено с точностью до сантиметра, метра и так далее. Возможно, эта информация будет дана (например, «длина поля измерена с точностью до метра»). Чтобы определить единицу измерения, посмотрите на то, как округлено данное значение.[7]

    • Например, если измеренная длина поля равна 106 м, значение было округлено до метров. Таким образом, единица измерения равна 1 м.
  2. Изображение с названием Calculate Absolute Error Step 12

    2

  3. Изображение с названием Calculate Absolute Error Step 13

    3

    Используйте максимально возможную ошибку в качестве абсолютной ошибки.[9]
    Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[10]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренная длина поля равна 106\pm 0,5 м, то есть абсолютная ошибка равна 0,5 м.

    Реклама

Советы

  • Если фактическое значение не указано, найдите принятое опорное или теоретическое значение.

Реклама

Об этой статье

Эту страницу просматривали 26 271 раз.

Была ли эта статья полезной?

Напечатано:: Гость
Дата: пятница, 22 сентября 2023, 08:59

Описание

1. Понятие о погрешности измерения.

2. Классификация погрешностей измерения.

3. Систематические погрешности

Оглавление

  • 1. Понятие о погрешности измерения
  • 2. Классификация погрешностей измерения
  • 3. Систематические погрешности

1. Понятие о погрешности измерения

Всякий процесс измерения независимо от условий, в которых его про­водят, сопряжен с погрешностями, которые искажают представление о действительном значении измеряемой величины.

Погрешностью называют отличие между объективно существующим истинным значением физической величины и найденным в результате измерения действительным значением физической величины.

Истинное значение физической величины идеальным образом отражает соответствующее свойство объекта. Практически получено быть не может.

Действительное значение физической величины находится как результат измерения и приближается к истинному значению настолько, что для данной цели может применяться вместо него.

Источниками появления погрешностей при измерениях могут служить различные факторы, основными из которых являются: несовершенство конструкции средств измерений или принципиальной схемы метода измерения; неточность изготовления средств измерений; несоблюдение внешних условий при измерениях; субъективные погрешности и др.

2. Классификация погрешностей измерения

В зависимости от обстоятельств, при которых проводились измерения, а также в зависимости от целей измерения, выбирается та или иная классификация погрешностей. Иногда используют одновременно несколько взаимно пересекающихся классификаций, желая по нескольким признакам точно охарактеризовать влияющие на результат измерения физические величины. В таком случае рассматривают, например, инструментальную составляющую неисключённой систематической погрешности. При выборе классификаций важно учитывать наиболее весомые или динамично меняющиеся или поддающиеся регулировке влияющие величины. Ниже приведены общепринятые классификации согласно типовым признакам и влияющим величинам.

По виду представления, различают абсолютную, относительную и приведённую погрешности.

Абсолютная погрешность это разница между результатом измерения X и истинным значением Q измеряемой величины. Абсолютная погрешность находится как D = X — Q и выражается в единицах измеряемой величины.

Относительная погрешность это отношение абсолютной погрешности измерения к истинному значению измеряемой величины: d = D / Q = (X – Q) / Q .

Приведённая погрешность это относительная погрешность, в которой абсолютная погрешность средства измерения отнесена к условно принятому нормирующему значению QN , постоянному во всём диапазоне измерений или его части. Относительная и приведённая погрешности – безразмерные величины.

В зависимости от источника возникновения, различают субъективную, инструментальную и методическую погрешности.

Субъективная погрешность обусловлена погрешностью отсчёта оператором показаний средства измерения.

Инструментальная погрешность обусловлена несовершенством применяемого средства измерения. Иногда эту погрешность называют аппаратурной. Метрологические характеристики средств измерений нормируются согласно ГОСТ 8.009 – 84, при этом различают четыре составляющие инструментальной погрешности: основная, дополнительная, динамическая, интегральная. Согласно этой классификации, инструментальная погрешность зависит от условий и режима работы, а также от параметров сигнала и объекта измерения.

Методическая погрешность обусловлена следующими основными причинами:

– отличие принятой модели объекта измерения от модели, адекватно описывающей его метрологические свойства;

– влияние средства измерения на объект измерения;

– неточность применяемых при вычислениях физических констант и математических соотношений.

В зависимости от измеряемой величины, различают погрешность аддитивную и мультипликативную. Аддитивная погрешность не зависит от измеряемой величины. Мультипликативная погрешность меняется пропорционально измеряемой величине.

В зависимости от режима работы средства измерений, различают статическую и динамическую погрешности.

Динамическая погрешность обусловлена реакцией средства измерения на изменение параметров измеряемого сигнала (динамический режим).

Статическая погрешность средства измерения определяется при параметрах измеряемого сигнала, принимаемых за неизменные на протяжении времени измерения (статический режим).

По характеру проявления во времени, различают случайную и систематическую погрешности.

Систематической погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остаётся постоянной или закономерно меняется.

Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом.

3. Систематические погрешности

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

Абсолютная и относительная погрешность


Абсолютная и относительная погрешность

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Опыт работы учителем математики — более 33 лет.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Заключение

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Светлана Лобанова-Асямолова

    10/10

  • Валерий Соломин

    10/10

  • Анастасия Юшкова

    10/10

  • Ксюша Пономарева

    7/10

  • Паша Кривов

    10/10

  • Евгений Холопик

    9/10

  • Guzel Murtazina

    10/10

  • Максим Аполонов

    10/10

  • Olga Bimbirene

    9/10

  • Света Колодий

    10/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:

Интересное по теме:

  • Относительную ошибку измерения скорости
  • Относительной ошибкой опыта называется
  • Относительная стандартная ошибка
  • Относительная статистическая ошибка
  • Относительная среднеквадратическая ошибка

  • Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: